EplusSql
class wraps SQL queries that can retrieve simulation outputs using
EnergyPlus SQLite output file.
SQLite output is an optional output format for EnergyPlus. It will be created
if there is an object in class Output:SQLite
. If the value of field
Option
in class Output:SQLite
is set to "SimpleAndTabular"
, then
database tables related to the tabular reports will be also included.
There are more than 30 tables in the SQLite output file which contains all of
the data found in EnergyPlus's tabular output files, standard variable and
meter output files, plus a number of reports that are found in the
eplusout.eio output file. The full description for SQLite outputs can be
found in the EnergyPlus "Output Details and Examples" documentation. Note
that all column names of tables returned have been tidied, i.e. "KeyValue"
becomes "key_value"
, "IsMeter"
becomes "is_meter"
and etc.
EplusSql
class makes it possible to directly retrieve simulation results
without creating an EplusJob object. EplusJob can only get simulation
outputs after the job was successfully run before.
However, it should be noted that, unlike EplusJob, there is no checking on
whether the simulation is terminated or completed unsuccessfully or, the
parent Idf has been changed since last simulation. This means that you may
encounter some problems when retrieve data from an unsuccessful simulation.
It is suggested to carefully go through the .err
file using read_err()
to
make sure the output data in the SQLite is correct and reliable.
new()
Create an EplusSql
object
EplusSql$new(sql)
\dontrun{
if (is_avail_eplus("8.8")) {
idf_name <- "1ZoneUncontrolled.idf"
epw_name <- "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
idf_path <- path_eplus_example("8.8", idf_name)
epw_path <- path_eplus_weather("8.8", epw_name)
# copy to tempdir and run the model
idf <- read_idf(idf_path)
idf$run(epw_path, tempdir(), echo = FALSE)
# create from local file
sql <- eplus_sql(file.path(tempdir(), "1ZoneUncontrolled.sql"))
}
}
path_idf()
Get the path of corresponding IDF file
read_table()
Read a single table from current EnergyPlus SQL output
$read_table()
takes a valid table name
of those from
$list_table()
and returns that table data in a data.table::data.table()
format.
report_data_dict()
Read report data dictionary from current EnergyPlus SQL output
$report_data_dict()
returns a data.table::data.table()
which
contains all information about report data.
For details on the meaning of each columns, please see "2.20.2.1 ReportDataDictionary Table" in EnergyPlus "Output Details and Examples" documentation.
A data.table::data.table()
of 10 columns:
report_data_dictionary_index
: The integer used to link the
dictionary data to the variable data. Mainly useful when joining
different tables
is_meter
: Whether report data is a meter data. Possible values:
0
and 1
timestep_type
: Type of data timestep. Possible values: Zone
and
HVAC System
key_value
: Key name of the data
name
: Actual report data name
reporting_frequency
:
schedule_name
: Name of the the schedule that controls reporting
frequency.
units
: The data units
report_data()
Read report data
EplusSql$report_data(
key_value = NULL,
name = NULL,
year = NULL,
tz = "UTC",
case = "auto",
all = FALSE,
wide = FALSE,
period = NULL,
month = NULL,
day = NULL,
hour = NULL,
minute = NULL,
interval = NULL,
simulation_days = NULL,
day_type = NULL,
environment_name = NULL
)
key_value
A character vector to identify key values of the
data. If NULL
, all keys of that variable will be returned.
key_value
can also be data.frame that contains key_value
and name
columns. In this case, name
argument in
$report_data()
is ignored. All available key_value
for
current simulation output can be obtained using
$report_data_dict()
.
Default: NULL
.
name
A character vector to identify names of the data. If
NULL
, all names of that variable will be returned. If
key_value
is a data.frame, name
is ignored. All available
name
for current simulation output can be obtained using
$report_data_dict()
.
Default: NULL
.
year
Year of the date time in column datetime
. If NULL
, it
will calculate a year value that meets the start day of week
restriction for each environment. Default: NULL
.
tz
Time zone of date time in column datetime
. Default:
"UTC"
.
case
A single string used to add a character column case
in
the returned results to indicate the case of this simulation.
If NULL
, no column is added. If "auto"
, the name of the
IDF file without extension is used. Default: "auto"
.
all
If TRUE
, extra columns are also included in the returned
data.table::data.table()
.
wide
If TRUE
, the output is formatted in the same way as
standard EnergyPlus csv output file.
period
A Date or POSIXt vector used to specify which time
period to return. The year value does not matter and only
month, day, hour and minute value will be used when
subsetting. If NULL
, all time period of data is returned.
Default: NULL
.
month, day, hour, minute
Each is an integer vector for month,
day, hour, minute subsetting of datetime
column when
querying on the SQL database. If NULL
, no subsetting is
performed on those components. All possible month
, day
,
hour
and minute
can be obtained using
$read_table("Time")
.
Default: NULL
.
interval
An integer vector used to specify which interval
length of report to extract. If NULL
, all interval will be
used. Default: NULL
.
simulation_days
An integer vector to specify which simulation
day data to extract. Note that this number resets after warmup
and at the beginning of an environment period. All possible
simulation_days
can be obtained using
$read_table("Time")
.
If NULL
, all simulation days will be used. Default: NULL
.
day_type
A character vector to specify which day type of data
to extract. All possible day types are: Sunday
, Monday
,
Tuesday
, Wednesday
, Thursday
, Friday
, Saturday
,
Holiday
, SummerDesignDay
, WinterDesignDay
, CustomDay1
,
and CustomDay2
. All possible values for current simulation
output can be obtained using
$read_table("Time")
.
A few grouped options are also provided:
"Weekday"
: All working days, i.e. from Monday to Friday
"Weekend"
: Saturday and Sunday
"DesignDay"
: Equivalent to "SummerDesignDay"
plus "WinterDesignDay"
"CustomDay"
: CustomDay1 and CustomDay2
"SpecialDay"
: Equivalent to "DesignDay"
plus "CustomDay"
"NormalDay"
: Equivalent to "Weekday"
and "Weekend"
plus "Holiday"
environment_name
A character vector to specify which
environment data to extract. If NULL
, all environment data
are returned. Default: NULL
. All possible
environment_name
for current simulation output can be
obtained using:
$report_data()
extracts the report data in a
data.table::data.table()
using key values, variable names and other
specifications.
$report_data()
can also directly take all or subset output from
$report_data_dict()
as input, and extract all data specified.
The returned column numbers varies depending on all
argument.
all
is FALSE
, the returned data.table::data.table()
has 6 columns:
case
: Simulation case specified using case
argument
datetime
: The date time of simulation result
key_value
: Key name of the data
name
: Actual report data name
units
: The data units
value
: The data value
all
is TRUE
, besides columns described above, extra columns are also
included:
month
: The month of reported date time
day
: The day of month of reported date time
hour
: The hour of reported date time
minute
: The minute of reported date time
dst
: Daylight saving time indicator. Possible values: 0
and 1
interval
: Length of reporting interval
simulation_days
: Day of simulation
day_type
: The type of day, e.g. Monday
, Tuesday
and etc.
environment_period_index
: The indices of environment.
environment_name
: A text string identifying the environment.
is_meter
: Whether report data is a meter data. Possible values: 0
and
1
type
: Nature of data type with respect to state. Possible values: Sum
and Avg
index_group
: The report group, e.g. Zone
, System
timestep_type
: Type of data timestep. Possible values: Zone
and HVAC System
reporting_frequency
: The reporting frequency of the variable, e.g.
HVAC System Timestep
, Zone Timestep
.
schedule_name
: Name of the the schedule that controls reporting
frequency.
With the datetime
column, it is quite straightforward to apply time-series
analysis on the simulation output. However, another painful thing is that
every simulation run period has its own Day of Week for Start Day
. Randomly
setting the year
may result in a date time series that does not have
the same start day of week as specified in the RunPeriod objects.
eplusr provides a simple solution for this. By setting year
to NULL
,
which is the default behavior, eplusr will calculate a year value (from
year 2017 backwards) for each run period that compliances with the start
day of week restriction.
It is worth noting that EnergyPlus uses 24-hour clock system where 24 is only used to denote midnight at the end of a calendar day. In EnergyPlus output, "00:24:00" with a time interval being 15 mins represents a time period from "00:23:45" to "00:24:00", and similarly "00:15:00" represents a time period from "00:24:00" to "00:15:00" of the next day. This means that if current day is Friday, day of week rule applied in schedule time period "00:23:45" to "00:24:00" (presented as "00:24:00" in the output) is also Friday, but not Saturday. However, if you try to get the day of week of time "00:24:00" in R, you will get Saturday, but not Friday. This introduces inconsistency and may cause problems when doing data analysis considering day of week value.
With wide
equals TRUE
, $report_data()
will format the simulation output
in the same way as standard EnergyPlus csv output file. Sometimes this can be
useful as there may be existing tools/workflows that depend on this format.
When both wide
and all
are TRUE
, columns of runperiod environment names
and date time components are also returned, including:
environment_period_index", "environment_name
, simulation_days
,
datetime
, month
, day
, hour
, minute
, day_type
.
For convenience, input character arguments matching in
$report_data()
are case-insensitive.
\dontrun{
# read all report data
sql$report_data()
# specify output variables using report data dictionary
dict <- sql$report_data_dict()
sql$report_data(dict[units == "C"])
# specify output variables using 'key_value' and 'name'
sql$report_data("environment", "site outdoor air drybulb temperature")
# explicitly specify year value and time zone
sql$report_data(dict[1], year = 2020, tz = "Etc/GMT+8")
# explicitly specify case name
sql$report_data(dict[1], case = "example")
# get all possible columns
sql$report_data(dict[1], all = TRUE)
# return in a format that is similar as EnergyPlus CSV output
sql$report_data(dict[1], wide = TRUE)
# return in a format that is similar as EnergyPlus CSV output with
# extra columns
sql$report_data(dict[1], wide = TRUE, all = TRUE)
# only get data at the working hour on the first Monday
sql$report_data(dict[1], hour = 8:18, day_type = "monday", simulation_days = 1:7)
# only get specified run period data
sql$read_table("EnvironmentPeriods") # possible environment name
sql$report_data(dict[1], environment_name = "San Francisco Intl Ap CA USA TMY3 WMO#=724940")
# can also be done using 'environment_period_index' column
sql$report_data(dict[1], all = TRUE)[environment_period_index == 3L]
}
tabular_data()
Read tabular data
EplusSql$tabular_data(
report_name = NULL,
report_for = NULL,
table_name = NULL,
column_name = NULL,
row_name = NULL,
case = "auto",
wide = FALSE,
string_value = !wide
)
report_name, report_for, table_name, column_name, row_name
Each is a character vector for subsetting when querying the SQL database. For the meaning of each argument, please see the description above.
case
A single string used to add a character column case
in
the returned results to indicate the case of this simulation.
If NULL
, no column is added. If "auto"
, the name of the
IDF file without extension is used. Default: "auto"
.
wide
If TRUE
, each table will be converted into the similar
format as it is shown in EnergyPlus HTML output file. Default:
FALSE
.
string_value
Only applicable when wide
is TRUE
. If
string_value
is FALSE
, instead of keeping all values as
characters, values in possible numeric columns are converted
into numbers. Default: the opposite of wide
. Possible
numeric columns indicate column that:
columns that have associated units
columns that contents numbers
$tabular_data()
extracts the tabular data in a
data.table::data.table()
using report, table, column and row name
specifications. The returned data.table::data.table()
has
9 columns:
case
: Simulation case specified using case
argument
index
: Tabular data index
report_name
: The name of the report that the record belongs to
report_for
: The For
text that is associated with the record
table_name
: The name of the table that the record belongs to
column_name
: The name of the column that the record belongs to
row_name
: The name of the row that the record belongs to
units
: The units of the record
value
: The value of the record in string format by default.
For convenience, input character arguments matching in
$tabular_data()
are case-insensitive.
A data.table::data.table()
with 9 columns (when wide
is
FALSE
) or a named list of data.table::data.table()
s where the
names are the combination of report_name
, report_for
and
table_name
.
\dontrun{
# read all tabular data
sql$tabular_data()
# explicitly specify data you want
str(sql$tabular_data(
report_name = "AnnualBuildingUtilityPerformanceSummary",
table_name = "Site and Source Energy",
column_name = "Total Energy",
row_name = "Total Site Energy"
))
# get tabular data in wide format and coerce numeric values
str(sql$tabular_data(
report_name = "AnnualBuildingUtilityPerformanceSummary",
table_name = "Site and Source Energy",
column_name = "Total Energy",
row_name = "Total Site Energy",
wide = TRUE, string_value = FALSE
))
}
print()
Print EplusSql
object
## ------------------------------------------------
## Method `EplusSql$new`
## ------------------------------------------------
if (FALSE) { # \dontrun{
if (is_avail_eplus("8.8")) {
idf_name <- "1ZoneUncontrolled.idf"
epw_name <- "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
idf_path <- path_eplus_example("8.8", idf_name)
epw_path <- path_eplus_weather("8.8", epw_name)
# copy to tempdir and run the model
idf <- read_idf(idf_path)
idf$run(epw_path, tempdir(), echo = FALSE)
# create from local file
sql <- eplus_sql(file.path(tempdir(), "1ZoneUncontrolled.sql"))
}
} # }
## ------------------------------------------------
## Method `EplusSql$path`
## ------------------------------------------------
if (FALSE) { # \dontrun{
# get path
sql$path()
} # }
## ------------------------------------------------
## Method `EplusSql$path_idf`
## ------------------------------------------------
if (FALSE) { # \dontrun{
# get path
sql$path_idf()
} # }
## ------------------------------------------------
## Method `EplusSql$list_table`
## ------------------------------------------------
if (FALSE) { # \dontrun{
sql$list_table()
} # }
## ------------------------------------------------
## Method `EplusSql$read_table`
## ------------------------------------------------
if (FALSE) { # \dontrun{
# read a specific table
sql$read_table("Zones")
} # }
## ------------------------------------------------
## Method `EplusSql$report_data_dict`
## ------------------------------------------------
if (FALSE) { # \dontrun{
sql$report_data_dict()
} # }
## ------------------------------------------------
## Method `EplusSql$report_data`
## ------------------------------------------------
if (FALSE) { # \dontrun{
# read all report data
sql$report_data()
# specify output variables using report data dictionary
dict <- sql$report_data_dict()
sql$report_data(dict[units == "C"])
# specify output variables using 'key_value' and 'name'
sql$report_data("environment", "site outdoor air drybulb temperature")
# explicitly specify year value and time zone
sql$report_data(dict[1], year = 2020, tz = "Etc/GMT+8")
# explicitly specify case name
sql$report_data(dict[1], case = "example")
# get all possible columns
sql$report_data(dict[1], all = TRUE)
# return in a format that is similar as EnergyPlus CSV output
sql$report_data(dict[1], wide = TRUE)
# return in a format that is similar as EnergyPlus CSV output with
# extra columns
sql$report_data(dict[1], wide = TRUE, all = TRUE)
# only get data at the working hour on the first Monday
sql$report_data(dict[1], hour = 8:18, day_type = "monday", simulation_days = 1:7)
# only get specified run period data
sql$read_table("EnvironmentPeriods") # possible environment name
sql$report_data(dict[1], environment_name = "San Francisco Intl Ap CA USA TMY3 WMO#=724940")
# can also be done using 'environment_period_index' column
sql$report_data(dict[1], all = TRUE)[environment_period_index == 3L]
} # }
## ------------------------------------------------
## Method `EplusSql$tabular_data`
## ------------------------------------------------
if (FALSE) { # \dontrun{
# read all tabular data
sql$tabular_data()
# explicitly specify data you want
str(sql$tabular_data(
report_name = "AnnualBuildingUtilityPerformanceSummary",
table_name = "Site and Source Energy",
column_name = "Total Energy",
row_name = "Total Site Energy"
))
# get tabular data in wide format and coerce numeric values
str(sql$tabular_data(
report_name = "AnnualBuildingUtilityPerformanceSummary",
table_name = "Site and Source Energy",
column_name = "Total Energy",
row_name = "Total Site Energy",
wide = TRUE, string_value = FALSE
))
} # }
## ------------------------------------------------
## Method `EplusSql$print`
## ------------------------------------------------
if (FALSE) { # \dontrun{
sql$print()
} # }